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A finite element method is used to study the dual-phase-lag model on thermoelastic interactions
in a semi-infinite medium subjected to a ramp-type heating. The governing equations are taken in
a unified system from which the field equations for coupled thermoelasticity as well as for Lord
and Shulman theory can be easily obtained as particular cases. Due attention has been paid to
the finite time of rise of temperature, displacement and stress. The finite element method is pro-
posed to analyze the problem and obtain the numerical solutions for the displacement, temperature
and stress. Numerical results for the temperature distribution, displacement and thermal stress are
represented graphically. A comparison is made with the results predicted by the three theories.
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1. INTRODUCTION
The generalized theories of thermoelasticity, which admit
the finite speed of thermal signal, have been the center
of interest of active research during last three decades.
These theories remove the paradox of infinite speed of heat
propagation inherent in the conventional coupled dynam-
ical theory of thermoelasticity introduced by Biot.1 The
theory of couple thermoelasticity was extended by Lord
and Shulman (LS)2 and Green and Lindsay3 by includ-
ing the thermal relaxation time in constitutive relations.
The theory was extended for anisotropic body by Dhaliwal
and Sherief.4 Tzou5�6 proposed the dual-phase-lag (DPL)
model, which describes the interactions between phonons
and electrons on the microscopic level as retarding sources
causing a delayed response on the macroscopic scale. For
macroscopic formulation, it would be convenient to use
the (DPL) model for investigation of the micro-structural
effect on the behavior of heat transfer. The physical mean-
ings and the applicability of the (DPL) model have been
supported by the experimental results.7 The dual-phase-lag
(DPL) proposed by Tzou7 is such a modification of the
classical thermoelastic model in which the Fourier law is
replaced by an approximation to a modified Fourier law
with two different time translations: a phase-lag of the
heat flux tq and a phase-lag of temperature gradient t�.
A Taylor series approximation of the modified Fourier
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law, together with the remaining field equations leads to
a complete system of equations describing a dual-phase-
lag thermoelastic model. Abouelregeal8 studied a problem
of a semi-infinite medium subjected to exponential heat-
ing using a dual-phase-lag thermoelastic model. During
the last three decades a number of investigations9–12 have
been carried out using the aforesaid theories of gener-
alized thermoelasticity. Chandrasekharaiah13 studied one-
dimensional waves in a homogeneous isotropic half-space
due to sudden inputs of temperature and stress/strain on
the boundary by employing the Laplace transform method
in the context of thermoelasticity without energy dissipa-
tion. Note that in most of the earlier studies, mechanical
or thermal loading on the bounding surface was consid-
ered to be in the form of a shock. It is thus felt that a
finite rise time of external load (mechanical or thermal)
applied on the surface should be considered while studying
a practical problem of this nature. Considering this aspect
of rise time, Misra et al.14�15 and Youssef16 solved some
problems involving a ramp-type heating at the bounding
surface. Abbas and Abbas et al.17–20 applied the finite ele-
ment method in different problems. Recently Refs. [21–
23], studied other problems in waves.
The present investigation is devoted to study the ther-

moelastic interactions in a semi-infinite medium subjected
to a ramp-type heating using the finite element method
(FEM). Numerical results for the temperature distribution,
displacement and thermal stress are represented graph-
ically. Finally, the comparisons are made between the
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results predicted by the coupled theory (CT), Lord and
Shulman theory (LS) and dual-phase-lag model (DPL).

2. BASIC EQUATION AND FORMULATION
For a linear, homogenous and isotropic thermoelastic con-
tinuum, the generalized field equations can be presented
in a unified form as8

�
�2ui

�t2
= ��+��uj� ji+�ui� jj −	T� i+Fi (1)

The equation of heat conduction under dual-phase-lag
model(

1+ t�
�
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)
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(
�

�t
+ tq

�2

�t2

)

×
(
T +	T0

�uj� j

�t
−�Q

)
(2)

The constitutive equations are given by


ij = �ui� j�ij +��ui� j +uj� i�−	�T −T0��ij (3)

Three cases arise:
(i) Classical dynamical coupled theory (CT)

t� = tq = 0

(ii) Lord and Shulman’s theory (LS)

t� = 
 > 0� tq = 0

(iii) Dual phase model (DPL)

0< t� < tq

Let us consider a homogeneous, isotropic, thermoelastic
solid, occupying the region x≥ 0 where the x-axis is taken
perpendicular to the bounding plane of the half-space
pointing inwards. It assumed that the state of the medium
depends only on x and the time variable t. The medium
described above is considered to be exposed to ramp-type
surface heating described mathematically as

T �x=0 =
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(4)

T1 being a constant. It is assumed that there are no
body forces and heat sources in the medium and that the
plane x = 0 is taken to be traction free. Thus the field
Eqs. (1)–(3) in a one-dimensional case can be put as
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xx = ��+2��
�u

�x
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Write c2 = ��+2��/� and � = K/�ce for convenience,
we shall use the following nondimensional variables:
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Into Eqs. (5)–(7), one may obtain (after dropping the
superscript � for convenience)
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where a1 = �c2/�� a2 = T0	/�� 
1 = T0	/�c
2� 
2 =

	/�ce� in which 	 = �3�+2���t� The nondimensional
forms of the initial and boundary condition are:
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�t

= 0 (11)
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3. FINITE ELEMENT METHOD
In order to investigate the thermoelastic interactions in an
elastic half space subjected to a ramp-type heating, the
(FEM)24 is adopted due to its flexibility in modeling lay-
ered structures and its capability in obtaining full field
numerical solution. The governing Eqs. (8) and (9) are
coupled with initial and boundary conditions (11) and (12).
The numerical values of the dependent variables like dis-
placement u and the temperature T are obtained at the
interesting points which are called degrees of freedom.
The weak formulations of the non-dimensional governing
equations are derived. The set of independent test func-
tions to consist of the displacement �u and the temperature
�T is prescribed. The governing equations are multiplied
by independent weighting functions and then are integrated
over the spatial domain with the boundary. Applying inte-
gration by parts and making use of the divergence theo-
rem reduce the order of the spatial derivatives and allows
for the application of the boundary conditions. The same
shape functions are defined piecewise on the elements.
Using the Galerkin procedure, the unknown fields u and
T and the corresponding weighting functions are approxi-
mated by the same shape functions. The last step towards
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the finite element discretization is to choose the element
type and the associated shape functions. On the other hand,
the time derivatives of the unknown variables have to be
determined by Newmark time integration method or other
methods.24

In particular, the equation of motion become

∫
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The energy equation has the form
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4. NUMERICAL RESULTS AND DISCUSSION
In order to illustrate the problem, the copper material was
chosen for purposes of numerical evaluations. The physical
data which given as8

�= 7�76×1010 �kg� �m�−1 �s�−2

�= 3�86×1010 �kg� �m�−1 �s�−2

T0 = 293 �K�� K = 3�68×102 �kg� �m� �K�−1 �s�−3

ce = 3�831×102 �m�2 �K�−1 �s�−2

�= 8�954×103 �kg� �m�−3� �t = 17�8×10−6 �K�−1

The field quantities, temperature, displacement and stress
depend not only on the time t and space x, but also
depend on rise-time parameter t0 and on dual-phase-lag
parameters t�, tq . The results for displacement, temper-
ature and stress has been carried out by taking T1 = 1.
Figures 1–3 exhibit the variation of the displacement, tem-
perature and stress with space x under three theories.
The solid line (—) refer to the classical dynamical coupled
theory CT (t� = tq = 0). The dashed line (- - -) refer to
the Lord and Shulman theory LS (t� = 0� tq = 
 = 0�05).
The dot line (� � �) refer to the dual-phase-lag model DPL
(t� = 0�02� tq = 0�05). Figures 4–6 show that the effect of
rise-time parameter t0 under dual-phase-lag model (DPL).
It is obvious from Figures 1 and 4 that the displacement
is negative at x= 0 where its magnitude is maximum. The
displacement increases from the negative value to a pos-
itive value. In the positive values, the displacement has a
peak value that depends on the values of the rise-time and
the theories CT, LS and DPL. It is obvious from Figures 2
and 5 that the temperature decreases with the increase of
the space but they increase when decreasing the rise-time

Fig. 1. Variation of displacement with distance x at time t = 0�2 under
three theories.

Fig. 2. Variation of temperature with distance x at time t = 0�2 under
three theories.

parameter. There is significant difference in the value of
temperature is noticed for the CT, LS and DPL theories.
It is obvious from Figures 3 and 6 which give the stress
variation at different instants of rise-time and three theo-
ries with the space. Its magnitude increases from zero to a
maximum value after that decreases rapidly as x increases.

Fig. 3. Variation of stress with distance x at time t = 0�2 under three
theories.
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Fig. 4. Variation of displacement with distance x for different values of
t0 under DPL model at time t = 0�2.

Fig. 5. Variation of temperature with distance x for different values of
t0 under DPL model at time t = 0�2.

Fig. 6. Variation of stress with distance x for different values of t0 under
DPL model at time t = 0�2.

LIST OF SYMBOLS
��� Lame’s constants

� Density of the medium
ce Specific heat at constant strain
�t Coefficient of linear thermal expansion
t Time
T Temperature
T0 Reference temperature
K Thermal conductivity
Q Heat source
t� Phase-lag of temperature gradient
tq Phase-lag of the heat flux
t0 Time of rise of temperature
�ij Kronecker symbol
� Domain

�u��T The weighting functions

ij Components of stress tensor
ui Components of displacement vector
Fi Body force vector.
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